FRG 1 - Quantum Materials

Focus Research Group 1 will explore the emergent phenomena driven by the complex interplay between correlation, topology, and spin-orbit coupling in a variety of quantum and topological materials.

Researchers

Current
  • Christian Binek, UNL Physics (Scientific Director)
  • Shireen Adenwalla, UNL Physics
  • Peter Dowben, UNL Physics
  • Yinsheng Guo, UNL Chemistry
  • Xia Hong, UNL Physics (group leader)
  • Alexey Kovalev, UNL Physics
  • Rebecca Lai, UNL Chemistry (E/O leader)
  • Robert Streubel, UNL Physics
  • Evgeny Tsymbal, UNL Physics
  • Xiaoshan Xu, UNL Physics

Research Thrust 1:

Correlation, Topological, and Emergent Phenomena in Quantum Materials

Thrust 1 focuses on nanoscale thin films and heterostructures hosting topological antiferromagnetic (AFM) states, Berry phase effects in real and reciprocal spaces, and correlation-driven phenomena. FRG 1 seeks novel approaches to achieve energy efficient control of these quantum states, including the lift of Dirac nodal lines via Néel vector switching, novel tunneling behaviors, and electrical field effect control of topological Hall effects, which will be complemented with theoretical modeling.

Figure (a) 3D band structure (top) and 2D spin projection (bottom) in BiInO3. Figure (b) Schematic of a tunnel junction. Figure (c) Second harmonic generation mapping of 1L MoS2 on PZT. (d) Schematic of a Hall transistor hosting a Néel type skyrmion. Figure (e) Topological Hall effect in (110) NCO.
Fig.: (a) 3D band structure (top) and 2D spin projection (bottom) in BiInO3. (b) Schematic of a tunnel junction. (c) Second harmonic generation mapping of 1L MoS2 on PZT. (d) Schematic of a Hall transistor hosting a Néel type skyrmion. (e) Topological Hall effect in (110) NCO.

Research Thrust 2:

Magnoelectric and Valley Control of Layered, 2D Materials

Thrust 2 explores magnetoelectric and valley control of topological phases and valley-spin locking in layered 2D vdW materials, facilitating the development of a versatile platform for both charge and spin based topological quantum computing.

Figure (a) Schematic setup for the detection of the VHE in chromia with two antiparallel aligned domains of the surface magnetization. Figure (b) Working principle of the valley spin valve, where Ez can be supplied by a ferroelectric gate.
Fig.: (a) Schematic setup for the detection of the VHE in chromia with two antiparallel aligned domains of the surface magnetization. (b) Working principle of the valley spin valve, where Ez can be supplied by a ferroelectric gate.

Research Thrust 3:

New Materials for Spin-qubit Systems

Thrust 3 utilizes chemistry-based, bottom-up approaches to design material platforms that can host spin-qubits, seeks voltage control of molecular spin states for quantum logic operations, and explores their potential for achieving scalable quantum information storage and transfer.

FSchematics of (a) molecular qubit-linker-qubit structure, (b) SCO molecule Fe[H2B(pz)2]2(bipy), (c) RT conductance vs. applied voltage of a 20 nm Fe[H2B(pz)2]2(bipy) device (inset) on a uniform C5H2O5 film, and (d) 3D MOF of formula (VO (TCPP-Zn2-bpy)) (TCPP = tetracarboxyl- phenylporphyrinate; bpy=4,4′-bipyridyl).
Fig.: Schematics of (a) molecular qubit-linker-qubit structure, (b) SCO molecule Fe[H2B(pz)2]2(bipy), (c) RT conductance vs. applied voltage of a 20 nm Fe[H2B(pz)2]2(bipy) device (inset) on a uniform C5H2O5 film, and (d) 3D MOF of formula (VO (TCPP-Zn2-bpy)) (TCPP = tetracarboxyl- phenylporphyrinate; bpy=4,4′-bipyridyl).

FRG-1 Selected Publications

  • Ekanayaka, Thilini K. and Wang, Ping and Yazdani, Saeed and Phillips, Jared Paul and Mishra, Esha and Dale, Ashley S. and N’Diaye, Alpha T. and Klewe, Christoph and Shafer, Padraic and Freeland, John and Streubel, Robert and Wampler, James Paris and Zapf, Vivien and Cheng, Ruihua and Shatruk, Michael and Dowben, Peter A. (2022). Evidence of dynamical effects and critical field in a cobalt spin crossover complex.  Chemical Communications. 58  (5) 661 to 664. doi.org/10.1039/D1CC05309D  
  • Dhingra, Archit and Lipatov, Alexey and Lu, Haidong and Chagoya, Katerina and Dalton, Joseph and Gruverman, Alexei and Sinitskii, Alexander and Blair, Richard G and Dowben, Peter A. (2022). Surface and dynamical properties of GeI2. 2D Materials. 9  (2) 02500. doi.org/10.1088/2053-1583/ac4715
  • Spencer, Joseph A. and Mock, Alyssa L., and Jacobs, Alan G. and Schubert, Mathias and Zhang, Yuhao and Tadjer, Marko J.. (2022).  A review of band structure and material properties of transparent conducting and semiconducting oxides: Ga2 O 3 , Al2O3  , In 2 O 3  , ZnO, SnO 2 , CdO, NiO, CuO, and Sc 2 O3 .  Applied Physics Reviews. 9  (1) 011315. doi.org/10.1063/5.0078037 
  • He, Keke and Barut, Bilal and Yin, Shenchu and Randle, Michael D. and Dixit, Ripudaman and Arabchigavkani, Nargess and Nathawat, Jubin and Mahmood, Ather and Echtenkamp, Will and Binek, Christian and Dowben, Peter A. and Bird, Jonathan P. (2022). Graphene on Chromia: A System for Beyond‐Room‐Temperature Spintronics.  Advanced Materials. 34  (12) 2105023. doi.org/10.1002/adma.202105023
  • Sarkar, Kaushik and Shaji, Surabhi and Sarin, Suchit and Shield, Jeffrey E. and Binek, Christian and Kumar, Dhananjay. (2022). Large refrigerant capacity in superparamagnetic iron nanoparticles embedded in a thin film matrix.  Journal of Applied Physics. 132  (19) 193906. doi.org/10.1063/5.0120280
  • Mishra, Esha and Schultz, Cody M. and Lai, Rebecca Y. and Dowben, Peter A.. (2022). Coordination Chemistry of Uranyl Ions with Surface-Immobilized Peptides: An XPS Study.  Molecules. 27  (24) 8960. doi.org/10.3390/molecules27248960
  • Mishra, Esha and Ekanayaka, Thilini K. and Panagiotakopoulos, Theodoros and Le, Duy and Rahman, Talat S. and Wang, Ping and McElveen, Kayleigh A. and Phillips, Jared P. and Zaid Zaz, M. and Yazdani, Saeed and N'Diaye, Alpha T. and Lai, Rebecca Y. and Streubel, Robert and Cheng, Ruihua and Shatruk, Michael and Dowben, Peter A. (2022). Electronic structure of cobalt valence tautomeric molecules in different environments.  Nanoscale.  doi.org/10.1039/d2nr06834f 
  • Wang, Haohan and Balasubramanian, Balamurugan and Liu, Yaohua and Streubel, Robert and Pahari, Rabindra and Ekanayaka, Thilini Kumari and Mishra, Esha and Klewe, Christoph and Shafer, Padraic and Dhall, Rohan and Skomski, Ralph and Sellmyer, David J. and Xu, Xiaoshan. (2022). Magnetic moments and spin structure in single-phase B20 Co 1+x Si 1−x (x = 0.043).  Journal of Applied Physics. 131  (18) Article No. 183902. doi.org/10.1063/5.0090545
  • Chen, Xuegang and Wu, Qiuchen and Zhang, Le and Hao, Yifei and Han, Myung-Geun and Zhu, Yimei and Hong, Xia. (2022). Anomalous Hall effect and perpendicular magnetic anisotropy in ultrathin ferrimagnetic NiCo 2 O4 films.  Applied Physics Letters. 120  (24) 242401.doi.org/10.1063/5.0097869
  • Ullah, Ahsan and Li, Xin and Jin, Yunlong and Pahari, Rabindra and Yue, Lanping and Xu, Xiaoshan and Balasubramanian, Balamurugan and Sellmyer, David J. and Skomski, Ralph. (2022). Topological phase transitions and Berry-phase hysteresis in exchange-coupled nanomagnets.  Physical Review B. 106  (13). doi.org/10.1103/PhysRevB.106.134430
  • Wang, Jia and Ahmadi, Zahra and Lujan, David and Choe, Jeongheon and Taniguchi, Takashi and Watanabe, Kenji and Li, Xiaoqin and Shield, Jeffrey E. and Hong, Xia. (2022). Physical Vapor Transport Growth of Antiferromagnetic CrCl3 Flakes Down to Monolayer Thickness. Advanced Science. 10  (3) Article No. 2203548. doi.org/10.1002/advs.202203548
  • Dhingra, Archit and Lipatov, Alexey and Loes, Michael J. and Abourahma, Jehad and Pink, Maren and Sinitskii, Alexander and Dowben, Peter A. (2022). Effect of Au/HfS 3 interfacial interactions on properties of HfS3 -based devices.  Physical Chemistry Chemical Physics. 24  (22) 14016 to 14021. doi.org/10.1039/d2cp01254e
  • Xu, Xiaoshan and Mellinger, Corbyn and Cheng, Zhi Gang and Chen, Xuegang and Hong, Xia. (2022). Epitaxial NiCo 2O4 film as an emergent spintronic material: Magnetism and transport properties.  Journal of Applied Physics. 132  (2) 020901. doi.org/10.1063/5.0095326
  • Sun, Shuo and Rathnayake, Dhanusha T. and Guo, Yinsheng. (2022). Asymmetrical Spectral Continuum between Anti-Stokes and Stokes Scattering Revealed in Low-Frequency Surface-Enhanced Raman Spectroscopy.  The Journal of Physical Chemistry C. 126  (27) 11193 to 11200. doi.org/10.1021/acs.jpcc.2c02486
  • Dhingra, Archit. (2022). Comment on “Rapid Solid-Phase Sulfurization Growth and Nonlinear Optical Characterization of Transfer-Free TiS3 Nanoribbons”.  Chemistry of Materials. 34  (15) 7090 to 7090. doi.org/10.1021/acs.chemmater.2c01122 
  • Li, Dawei and Huang, Xi and Wu, Qiuchen and Zhang, Le and Lu, Yongfeng and Hong, Xia. (2022). Ferroelectric Domain Control of Nonlinear Light Polarization in MoS 2 via PbZr0.2Ti 0.8 O3 Thin Films and Free‐Standing Membranes.  Advanced Materials.  Article No. 2208825. doi.org/10.1002/adma.202208825
  • Dhingra, Archit and Nikonov, Dmitri E. and Lipatov, Alexey and Sinitskii, Alexander and Dowben, Peter A. (2022). What happens when transition metal trichalcogenides are interfaced with gold?  Journal of Materials Research. doi.org/10.1557/s43578-022-00744-6
  • Subedi, Arjun and Yang, Detian and Yun, Yu and Xu, Xiaoshan and Dowben, Peter A. (2022). Surface-to-bulk core level shift in CoFe 2 O4 thin films. Journal of Vacuum Science & Technology A. 40  (2) Article No. 023201. doi.org/10.1116/6.0001436
  • Skomski, R. and Balasubramanian, B. and Ullah, A. and Binek, C. and Sellmyer, D. J. (2022). Berry-phase interpretation of thin-film micromagnetism.  AIP Advances. 12  (3) 035341. doi.org/10.1063/9.0000332
  • Huang, Kai and Shao, Ding-Fu and Tsymbal, Evgeny Y. (2022). Ferroelectric Control of Magnetic Skyrmions in Two-Dimensional van der Waals Heterostructures.  Nano Letters. 22  (8) 3349 to 3355. doi.org/10.1021/acs.nanolett.2c00564
  • Assefa, T. A. and Seaberg, M. H. and Reid, A. H. and Shen, L. and Esposito, V. and Dakovski, G. L. and Schlotter, W. and Holladay, B. and Streubel, R. and Montoya, S. A. and Hart, P. and Nakahara, K. and Moeller, S. and Kevan, S. D. and Fischer, P. and Fullerton, E. E. and Colocho, W. and Lutman, A. and Decker, F.-J. and Sinha, S. K. and Roy, S. and Blackburn, E. and Turner, J. J.. (2022). The fluctuation–dissipation measurement instrument at the Linac Coherent Light Source.  Review of Scientific Instruments. 93  (8) 083902. doi.org/10.1063/5.0091297
  • Ma, Zhijun and Zhang, Qi and Tao, Lingling and Wang, Yihao and Sando, Daniel and Zhou, Jinling and Guo, Yizhong and Lord, Michael and Zhou, Peng and Ruan, Yongqi and Wang, Zhiwei and Hamilton, Alex and Gruverman, Alexei and Tsymbal, Evgeny Y. and Zhang, Tianjin and Valanoor, Nagarajan. (2022). A Room‐Temperature Ferroelectric Resonant Tunneling Diode. Advanced Materials. 34  (35) Article No. 2205359. doi.org/10.1002/adma.202205359
  • Dugan, Christina and Wang, Lu and Zhang, Kai and Mann, James Matthew and Kimani, Martin M. and Mei, Wai-Ning and Dowben, Peter A. and Petrosky, James. (2022). Interband Transitions and Critical Points of Single‐Crystal Thoria Compared with Urania.  physica status solidi (b). 259  (11) Article No. 2200238. doi.org/10.1002/pssb.202200238
  • Gilbert, Simeon J. and Yi, Hemian and Paudel, Tula and Lipatov, Alexey and Yost, Andrew J. and Sinitskii, Alexander and Tsymbal, Evgeny Y. and Avila, Jose and Asensio, Maria C. and Dowben, Peter A.. (2022). Strong Metal–Sulfur Hybridization in the Conduction Band of the Quasi-One-Dimensional Transition-Metal Trichalcogenides: TiS 3 and ZrS3. The Journal of Physical Chemistry C. 126  (41) 17647 to 17655.  doi.org/10.1021/acs.jpcc.2c05589
  • Dhingra, Archit. (2022). Layered GeI2: A wide-bandgap semiconductor for thermoelectric applications–A perspective.  Frontiers in Nanotechnology. 4.  doi.org/10.3389/fnano.2022.1095291
  • Ekanayaka, Thilini K. and Üngör, Ökten and Hu, Yuchen and Mishra, Esha and Phillips, Jared P. and Dale, Ashley S. and Yazdani, Saeed and Wang, Ping and McElveen, Kayleigh A. and Zaz, M. Zaid and Zhang, Jian and N'Diaye, Alpha T. and Klewe, Christoph and Shafer, Padraic and Lai, Rebecca Y. and Streubel, Robert and Cheng, Ruihua and Shatruk, Michael and Dowben, Peter A. (2023). Perturbing the spin state and conduction of Fe (II) spin crossover complexes with TCNQ. Materials Chemistry and Physics. 296  (C) 127276. doi.org/10.1016/j.matchemphys.2022.127276
  • Li, Tianlin and Zhang, Le and Hong, Xia. (2022). Anisotropic magnetoresistance and planar Hall effect in correlated and topological materials.  Journal of Vacuum Science & Technology A. 40  (1) Article No. 010807. doi.org/10.1116/6.0001443
  • Pahari, Rabindra and Balasubramanian, Balamurugan and Ullah, Ahsan and Manchanda, Priyanka and Komuro, Hiroaki and Streubel, Robert and Klewe, Christoph and Valloppilly, Shah R. and Shafer, Padraic and Dev, Pratibha and Skomski, Ralph and Sellmyer, David J. (2021). Peripheral chiral spin textures and topological Hall effect in CoSi nanomagnets.  Physical Review Materials. 5  (12). doi.org/10.1103/PhysRevMaterials.5.124418
  • Hong, Xia. (2021). Nitride perovskite becomes polar.  Science. 374  (6574).  doi.org/10.1126/science.abm7179
  • Shao, Ding-Fu and Zhang, Shu-Hui and Li, Ming and Eom, Chang-Beom and Tsymbal, Evgeny. (2021). Spin-neutral currents for spintronics.  Nature Communications. 12  (1). doi.org/10.1038/s41467-021-26915-3
  • Hao, Guanhua and N’Diaye, Alpha T. and Ekanayaka, Thilini K. and Dale, Ashley S. and Jiang, Xuanyuan and Mishra, Esha and Mellinger, Corbyn and Yazdani, Saeed and Freeland, John W. and Zhang, Jian and Cheng, Ruihua and Xu, Xiaoshan and Dowben, Peter A. (2021). Magnetic Field Perturbations to a Soft X-ray-Activated Fe (II) Molecular Spin State Transition.  Magnetochemistry. 7  (10). doi.org/10.3390/magnetochemistry7100135
  • Tsymbal, Evgeny. (2021). Two-dimensional ferroelectricity by design.  Science. 372  (6549). doi.org/10.1126/science.abi7296
  • Shevchenko, Valery and Bliznyuk, Valery and Gumenna, Mariana and Klimenko, Nina and Stryutsky, Alexandr and Wang, Junlei and Binek, Christian and Chernyakova, Margarita and Belikov, Konstantin. (2021). Coordination Polymers Based on Amphiphilic Oligomeric Silsesquioxanes and Transition Metal Ions (Co 2+, Ni2+): Structure and Stimuli‐Responsive Properties.  Macromolecular Materials and Engineering. 306  (5). doi.org/10.1002/mame.202100085
  • Su, Jing and Zheng, Xingwen and Wen, Zheng and Li, Tao and Xie, Shijie and Rabe, Karin M. and Liu, Xiaohui and Tsymbal, Evgeny Y.  (2021). Resonant band engineering of ferroelectric tunnel junctions.  Physical Review B. 104  (6). doi.org/10.1103/PhysRevB.104.L060101
  • Dhingra, Archit and Komesu, Takashi and Kumar, Shiv and Shimada, Kenya and Zhang, Le and Hong, Xia and Dowben, Peter A. (2021). Electronic band structure of iridates.  Materials Horizons. doi.org/10.1039/d1mh00063b
  • Mahmood, Ather and Echtenkamp, Will and Street, Mike and Wang, Jun-Lei and Cao, Shi Cao and Komesu, Takashi and Dowben, Peter A. and Buragohain, Pratyush and Lu, Haidong and Gruverman, Alexei and Parthasarathy, Arun and Rakheja, Shaloo and Binek, Christian. (2021). Voltage-Controlled Néel Vector Rotation in Zero Applied Magnetic Field.  Nature communications. doi.org/10.1038/s41467-021-21872-3
  • Streubel, Robert and Tsymbal, Evgeny Y. and Fischer, Peter. (2021). Magnetism in curved geometries.  Journal of Applied Physics. 129  (21).  doi.org/10.1063/5.0054025
  • Gurung, Gautam and Shao, Ding-Fu and Tsymbal, Evgeny Y. (2021). Transport spin polarization of noncollinear antiferromagnetic antiperovskites.  Physical Review Materials. 5  (12). doi.org/10.1103/PhysRevMaterials.5.124411
  • Angizi, Shaahin and Khoshavi, Navid and Marshall, Andrew and Dowben, Peter and Fan, Deliang. (2022). MeF-RAM: A New Non-Volatile Cache Memory Based on Magneto-Electric FET.  ACM Transactions on Design Automation of Electronic Systems. 27  (2). doi.org/10.1145/3484222