FRG 2 - Quantum Technologies

 

FRG 2 - Quantum Technologies

Focus Research Group 2 will address current limitations impeding quantum technology by exploring solid-state spin qubits for quantum sensing and metrology, and photons for ultrafast, compact, and low-power quantum communication nanophotonic devices.

Researchers

Current
  • Abdelghani Laraoui, UNL MME (group leader)
  • Mohammad Ghashami, UNL MME
  • Ufuk Kilic, UNL ECE
  • Sy-Hwang Liou, UNL Physics
  • Eva Schubert, UNL ECE
  • Mathias Schubert, UNL ECE
  • Jonathan Wrubel, Creighton Physics
Former
  • Christos Argyropoulos
  • Wei Bao

Research Thrust 1:

Quantum Sensing and Metrology

Quantum sensing is the use of qubits to detect environmental parameters. Quantum sensors based on atomic vapor cells are already used commercially in geology and navigation systems. The introduction of new quantum sensors, based on solid-state qubits, opens new applications with significant societal impact, including materials discovery, biosensing, and solid-state device characterization. In particular, the NV center in diamond, a spin-1 defect, is among the leading quantum sensors. It has an optically addressable electron spin with millisecond quantum coherence even at room temperature that enabled the first detection of single protons and proteins. NV centers also enabled sub-micron nuclear magnetic resonance (NMR) spectroscopy and demonstrate entanglement between distant (>1 km) spin qubits with high (> 90%) fidelity. Thrust 1 will use NV to study spin-magnon interactions in magnonic devices (Laraoui) and perform LF magnetic resonance spectroscopy, and develop THz-EPR-E to investigate new solid-state qubits in UWBG semiconductors with superior properties to NV.

Fig.: (a) Energy-levels of NV. (b) Schematic of ODMR microscope. (c) A diamond film mounted on a YIG disk. (d) NV ODMR peaks on (off) YIG, at applied fields of 180 G (160 G). (e) Magnon driven Rabi oscillations in NV spins (dip 1 in (d)).
Fig.: (a) Energy-levels of NV. (b) Schematic of ODMR microscope. (c) A diamond film mounted on a YIG disk. (d) NV ODMR peaks on (off) YIG, at applied fields of 180 G (160 G). (e) Magnon driven Rabi oscillations in NV spins (dip 1 in (d)).

Research Thrust 2:

Quantum Communication

Quantum photonics, such as boson sampling and quantum walks using single photon sources, and single-photon detectors have been one of the leading platforms for quantum computation and quantum communication. However, it is difficult to design these nanoscale technologies, because of fundamental physical limitations in the materials used, including the diffraction limit of light and extremely weak light-matter interactions at the nanoscale. Thrust 2 will design new hybrid composite photonic nanostructures made of ultrathin sub-nm dielectric oxide layers along ultrasmooth metals, perovskites, and solid-state emitters in UWBG semiconductors and 2D materials. FRG 2 will utilize unique theoretical, nanofabrication, and experimental photonic expertise to explore the complex behavior of these new structures. Such research promises to overcome current limitations impeding the design of quantum communication technologies by leading to the efficient control and enhancement of photon absorption; spontaneous and stimulated emission rates causing single or multiple photon streams, and other quantum optical, nonlinear, and topological processes.

Fig.: Enhanced nonlinear (a) and quantum (b) optical effects based on localized gap-plasmon nanostructures. (c) Arrays of GLAD fabricated Au-Si slanted nanocolumns and Ag-Si nanohelices to achieve enhanced chiral response. (d) Nonlinear helical metasurfaces for enhanced circularly-polarized harmonic generation.
Fig.: Enhanced nonlinear (a) and quantum (b) optical effects based on localized gap-plasmon nanostructures. (c) Arrays of GLAD fabricated Au-Si slanted nanocolumns and Ag-Si nanohelices to achieve enhanced chiral response. (d) Nonlinear helical metasurfaces for enhanced circularly-polarized harmonic generation.

FRG 2 Selected Publications

  1. Suvechhya Lamichhane, Yi Yang, Andrei Sokolov, Xiaolu Yin, Yen-Fu Liu and Sy-Hwang Liou, “Half bridge configurated magneto-resistive sensors with flux guide structure for enhancing sensitivity,” Appl. Phys. Lett. 124, 212401 (Pgs. 1-6) (2024); DOI: 10.1063/5.0203392.
  2. Yi Yang, Andrei Sokolov, Xiaolu Yin, Jiong Hua, Yen-Fu Liu, Suvechhya Lamichhane, Sy-Hwang Liou, “Novel Magnetic Flux Guiding Structure of Magnetoresistive Sensor for Increased Sensitivity,” IEEE Transactions on Magnetics 59 (1), 4400107 (Pgs. 1-7) (2023); DOI: 10.1109/TMAG.2022.3219782.
  3. Andrew Butler and Christos Argyropoulos, “Exceptional points in parity-time symmetric plasmonic Huygens’ metasurfaces,” Opt. Mater. Express 13 (2), 447-457 (2023); https://doi.org/10.1364/OME.481309.
  4. Prem Bahadur Karki, Rupak Timalsina, Mohammadjavad Dowran, Ayodimeji E. Aregbesola, Abdelghani Laraoui, Kapildeb Ambal, “An efficient method to create high-density nitrogen-vacancy centers in CVD diamond for sensing applications,” Diamond & Related Materials 140, 110472 (Pgs. 1-7) (2023); https://doi.org/10.1016/j.diamond.2023.110472.
  5. Nhat Nguyen, Bryce Herrington, Kayetan Chorazewicz, Szu-Fan (Paul) Wang, Ruthi Zielinski, John Turner, Paul D. Ashby, Ufuk Kilic, Eva Schubert, Mathias Schubert, “Ferromagnetic resonators synthesized by metal-organic decomposition epitaxy,” J. Phys.: Condens. Matter 35, 485801 (Pgs. 1-9) (2023); DOI: 10.1088/1361-648X/acf35b.
  6. Mohammadjavad Dowran, Andrew Butler, Suvechhya Lamichhane, Adam Erickson, Ufuk Kilic, Sy-Hwang Liou, Christos Argyropoulos, Abdelghani Laraoui, “Plasmon Enhanced Quantum Properties of Single Photon Emitters with Hybrid Hexagonal Boron Nitride Silver Nanocube Systems,” Adv. Optical Mater. 11 (16), 2300392 (Pgs. 1-7) (2023); https://doi.org/10.1002/adom.202300392.
  7. Larousse Khosravi Khorashad and Christos Argyropoulos, “Unraveling the temperature dynamics and hot electron generation in tunable gap-plasmon metasurface absorbers,” Nanophotonics 11 (17), 4037–4052 (2022); https://doi.org/10.1515/nanoph-2022-0048.
  8. Suvechhya Lamichhane, Rupak Timalsina, Cody Schultz, Ilja Fescenko, Kapildeb Ambal, Sy-Hwang Liou, Rebecca Y. Lai and Abdelghani Laraoui, “Nitrogen-Vacancy Magnetic Relaxometry of Nanoclustered Cytochrome C Proteins,” Nano Lett. 24 (3), 873–880 (2024); DOI: 10.1021/acs.nanolett.3c03843.
  9. L. Khosravi Khorashad, A. Reicks, A. Erickson, J.E. Shield, D. Alexander, A. Laraoui, G. Gogos, C. Zuhlke, C. Argyropoulos, “Unraveling the formation dynamics of metallic femtosecond laser induced periodic surface structures,” Optics & Laser Technology 171, 110410 (Pgs. 1-10) (2024); https://doi.org/10.1016/j.optlastec.2023.110410.
  10. Alexander Ruder, Brandon Wright, Rene Feder, Ufuk Kilic, Matthew Hilfiker, Eva Schubert, Craig M. Herzinger, and Mathias Schubert, “Mueller matrix imaging microscope using dual continuously rotating anisotropic mirrors,” Optics Express 29 (18), 28704-28724 (2021); https://doi.org/10.1364/OE.435972.
  11. Matthew Hilfiker, Emma Williams, Ufuk Kilic, Yousra Traouli, Nate Koeppe, Jose Rivera, Assya Abakar, Megan Stokey, Rafał Korlacki, Zbigniew Galazka, Klaus Irmscher and Mathias Schubert, “Elevated temperature spectroscopic ellipsometry analysis of the dielectric function, exciton, band-to-band transition, and high-frequency dielectric constant properties for single-crystal ZnGa2O4,” Appl. Phys. Lett. 120, 132105 (2022); https://doi.org/10.1063/5.0087623.
  12. Markus B. Raschke, Mathias Schubert, Prineha Narang and Alexander Paarmann, “Optical nanoprobe imaging and spectroscopy,” Appl. Phys. Lett. 123, 230401 (Pgs. 1-3) (2023); https://doi.org/10.1063/5.0186788.
  13. Guangyi Jia, Wenxuan Xue, Zhenxin Jia and Mathias Schubert, “Giant photonic spin Hall effect induced by hyperbolic shear polaritons,” Phys. Chem. Chem. Phys. 25, 11245–11252 (2023); DOI: 10.1039/d3cp00205e.
  14. Md. Mohsinur Rahman Adnan, Darpan Verma, Chris Sturm, Mathias Schubert and Roberto C. Myers, “Anisotropic Beer-Lambert law in 𝛽-Ga2O3: Polarization-dependent absorption and photoresponsivity spectra,” Phys. Rev. Applied 21 (5), 054059 (Pgs. 1-15) (2024); DOI: 10.1103/PhysRevApplied.21.054059.
  15. Zahra Barani, Tekwam Geremew, Megan Stokey, Nicholas Sesing, Maedeh Taheri, Matthew J. Hilfiker, Fariborz Kargar, Mathias Schubert, Tina T. Salguero and Alexander A. Balandin, “Quantum Composites with Charge-Density-Wave Fillers,” Adv. Mater. 35, 2209708 (Pgs. 1-10) (2023); https://doi.org/10.1002/adma.202209708.
  16. Zahra Barani, Tekwam Geremew, Megan Stokey, Nicholas Sesing, Maedeh Taheri, Matthew J. Hilfiker, Fariborz Kargar, Mathias Schubert, Tina T. Salguero and Alexander A. Balandin, “Quantum Composites with Charge-Density-Wave Fillers,” Adv. Mater. 35, 2209708 (Pgs. 1-10) (2023); https://doi.org/10.1002/adma.202209708.
  17. Frank K. Urban, III, David Barton and Mathias Schubert, “Numerical ellipsometry: A method for selecting a near-minimal infrared measurement set for β-gallium oxide,” J. Vac. Sci. Technol. A 39, 052801 (Pgs. 1-16) (2021); https://doi.org/10.1116/6.0001002.
  18. Afrouz Taherian, Jacqueline Cooke, Mathias Schubert and Berardi Sensale-Rodriguez, “Anisotropic quasi-static permittivity of rare-earth scandate single crystals measured by terahertz spectroscopy,” J. Appl. Phys. 135, 173102 (Pgs. 1-8) (2024); https://doi.org/10.1063/5.0207198.
  19. Matthew Hilfiker, Ufuk Kilic, Megan Stokey, Riena Jinno, Yongjin Cho, Huili Grace Xing, Debdeep Jena, Rafał Korlacki and Mathias Schubert, “High-frequency and below bandgap anisotropic dielectric constants in α-(AlxGa1−x)2O3 (⁠≤ x ≤ 1),” Appl. Phys. Lett. 119 (9), 092103 (Pgs. 1-5) (2021); https://doi.org/10.1063/5.0064528.
  20. Ufuk Kilic, Matthew Hilfiker, Shawn Wimer, Alexander Ruder, Eva Schubert, Mathias Schubert and Christos Argyropoulos, “Controlling the broadband enhanced light chirality with L-shaped dielectric metamaterials,” Nat. Commun. 15, 3757 (Pgs. 1-10) (2024); https://doi.org/10.1038/s41467-024-48051-4.
  21. Sean Knight, Steffen Richter, Alexis Papamichail, Megan Stokey, Rafał Korlacki, Vallery Stanishev, Philipp Kühne, Mathias Schubert and Vanya Darakchieva, “Terahertz permittivity parameters of monoclinic single crystal lutetium oxyorthosilicate,” Appl. Phys. Lett. 124, 032101 (Pgs. 1-6) (2024); https://doi.org/10.1063/5.0177304.
  22. D. Gogova, D. Q. Tran, V. Stanishev, V. Jokubavicius, L. Vines, M. Schubert, R. Yakimova, P. P. Paskov and V. Darakchieva, “High crystalline quality homoepitaxial Si-doped β-Ga2O3(010) layers with reduced structural anisotropy grown by hot-wall MOCVD,” J. Vac. Sci. Technol. A 42, 022708 (Pgs. 1-9) (2024); https://doi.org/10.1116/6.0003424.
  23. Philipp Kühne, Nerijus Armakavicius, Alexis Papamichail, Dat Q. Tran, Vallery Stanishev, Mathias Schubert, Plamen P. Paskov and Vanya Darakchieva, “Enhancement of 2DEG effective mass in AlN/Al0.78Ga0.22N high electron mobility transistor structure determined by THz optical Hall effect,” Appl. Phys. Lett. 120, 253102 (Pgs. 1-6) (2022); https://doi.org/10.1063/5.0087033.
  24. Nerijus Armakavicius, Sean Knight, Philipp Kühne, Vallery Stanishev, Dat Q. Tran, Steffen Richter, Alexis Papamichail, Megan Stokey, Preston Sorensen, Ufuk Kilic, Mathias Schubert, Plamen P. Paskov and Vanya Darakchieva, “Electron effective mass in GaN revisited: New insights from terahertz and mid-infrared optical Hall effect,” APL Mater. 12, 021114 (Pgs. 1-8) (2024); https://doi.org/10.1063/5.0176188.
  25. Daniela Gogova, Misagh Ghezellou, Dat Q. Tran, Steffen Richter, Alexis Papamichail, Jawad ul Hassan, Axel R. Persson, Per O. Å. Persson, Olof Kordina; Bo Monemar, Matthew Hilfiker, Mathias Schubert, Plamen P. Paskov and Vanya Darakchieva, “Epitaxial growth of β-Ga2O3 by hot-wall MOCVD,” AIP Advances 12, 055022 (Pgs. 1-7) (2022); https://doi.org/10.1063/5.0087571.
  26. Sean Knight, Steffen Richter, Alexis Papamichail, Philipp Kühne, Nerijus Armakavicius, Shiqi Guo, Axel R. Persson, Vallery Stanishev, Viktor Rindert, Per O. Å. Persson, Plamen P. Paskov, Mathias Schubert and Vanya Darakchieva, “Room temperature two-dimensional electron gas scattering time, effective mass, and mobility parameters in AlxGa1−xN/GaN heterostructures (0.07 ≤ x ≤ 0.42),” J. Appl. Phys. 134, 185701 (Pgs. 1-12) (2023); https://doi.org/10.1063/5.0163754.
  27. Rafał Korlacki, Matthew Hilfiker, Jenna Knudtson, Megan Stokey, Ufuk Kilic, Akhil Mauze, Yuewei Zhang, James Speck, Vanya Darakchieva and Mathias Schubert, “Strain and Composition Dependencies of the Near-Band-Gap Optical Transitions in Monoclinic (Al𝑥Ga1−𝑥)2O3 Alloys with Coherent Biaxial In-Plane Strain on Ga2O3(010),” Phys. Rev. Applied 18 (6), 064019 (Pgs. 1-13) (2022); DOI: 10.1103/PhysRevApplied.18.064019.
  28. Joseph R. Matson, Md Nazmul Alam, Georgios Varnavides, Patrick Sohr, Sean Knight, Vanya Darakchieva, Megan Stokey, Mathias Schubert, Ayman Said, Thomas Beechem, Prineha Narang, Stephanie Law and Joshua D. Caldwell, “The Role of Optical Phonon Confinement in the Infrared Dielectric Response of III–V Superlattices,” Adv. Mater. 36, 2305106 (Pgs. 1-10) (2024); https://doi.org/10.1002/adma.202305106.
  29. Adam Erickson, Syed Qamar Abbas Shah, Ather Mahmood, Ilja Fescenko, Rupak Timalsina, Christian Binek and Abdelghani Laraoui, “Nanoscale imaging of antiferromagnetic domains in epitaxial films of Cr2O3 via scanning diamond magnetic probe microscopy,” RSC Adv. 13 (1), 178-185 (2023); DOI: 10.1039/d2ra06440e.
  30. Suvechhya Lamichhane, Kayleigh A. McElveen, Adam Erickson, Ilja Fescenko, Shuo Sun, Rupak Timalsina, Yinsheng Guo, Sy-Hwang Liou, Rebecca Y. Lai and Abdelghani Laraoui, “Nitrogen-Vacancy Magnetometry of Individual Fe-Triazole Spin Crossover Nanorods,” CS Nano 17 (9), 8694–8704 (2023); https://doi.org/10.1021/acsnano.3c01819.
  31. Guangyi Jia, Jinxuan Luo, Congyu Cui, Ruijuan Kou, Yali Tian and Mathias Schubert, “Valley quantum interference modulated by hyperbolic shear polaritons,” Phys. Rev. B 109, 155417 (Pgs. 1-11) (2024); DOI: https://doi.org/10.1103/PhysRevB.109.155417.
  32. Ben J. Olohan, Emilija Petronijevic, Ufuk Kilic, Shawn Wimer, Matthew Hilfiker, Mathias Schubert, Christos Argyropoulos, Eva Schubert, Samuel R. Clowes, G. Dan Pantoş, David L. Andrews and Ventsislav K. Valev, “Chiroptical Second-Harmonic Tyndall Scattering from Silicon Nanohelices,” ACS Nano 18 (26), 16766-16775 (2024); DOI: 10.1021/acsnano.4c02006.
  33. Andrew Butler, Jack Schulz and Christos Argyropoulos, “Tunable directional filter for mid-infrared optical transmission switching,” Optics Express 30 (22), pp. 39716-39724 (2022); https://doi.org/10.1364/OE.474728.
  34. Stokey, Megan and Korlacki, Rafał and Hilfiker, Matthew and Knight, Sean and Richter, Steffen and Darakchieva, Vanya and Jinno, Riena and Cho, Yongjin and Xing, Huili Grace and Jena, Debdeep and Oshima, Yuichi and Khan, Kamruzzaman and Ahmadi, Elaheh and Schubert, Mathias (2022). Infrared dielectric functions and Brillouin zone center phonons of  α-Ga2O3 compared to α-Al2O3. Physical Review Materials. 6 (1). doi.org/10.1103/PhysRevMaterials.6.01460
  35. Tao, Renjie and Peng, Kai and Haeberlé, Louis and Li, Quanwei and Jin, Dafei and Fleming, Graham R. and Kéna-Cohen, Stéphane and Zhang, Xiang and Bao, Wei. (2022). Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature.  Nature Materials. 21  (7) 761 to 766. doi.org/10.1038/s41563-022-01276-4
  36. Hilfiker, Matthew and Kilic, Ufuk and Stokey, Megan and Jinno, Riena and Cho, Yongjin and Xing, Huili Grace and Jena, Debdeep and Korlacki, Rafał and Schubert, Mathias. (2022). Anisotropic dielectric function, direction dependent bandgap energy, band order, and indirect to direct gap crossover in α -(AlxGa1−x)2 O3 (0≤x≤1). Applied Physics Letters. 121 (5) 052101. doi.org/10.1063/5.0087602
  37. Krause, Bryson and Mishra, Dhananjay and Chen, Jiyang and Argyropoulos, Christos and Hoang, Thang. (2022). Nonlinear Strong Coupling by Second‐Harmonic Generation Enhancement in Plasmonic Nanopatch Antennas. Advanced Optical Materials. 10 (16) 2200510. doi.org/10.1002/adom.202200510
  38. Laraoui, Abdelghani and Ambal, Kapildeb. (2022). Opportunities for nitrogen-vacancy-assisted magnetometry to study magnetism in 2D van der Waals magnets. Applied Physics Letters. 121  (6) 060502. doi.org/10.1063/5.0091931
  39. Guo, Tianjing and Argyropoulos, Christos. (2022). Nonreciprocal transmission of electromagnetic waves with nonlinear active plasmonic metasurfaces. Physical Review B. 106  (23). doi.org/10.1103/PhysRevB.106.235418
  40. Hussain, Kazi Albab and Chen, Cheng and Haggerty, Ryan and Schubert, Mathias and Li, Yusong. (2022). Fundamental Mechanisms and Factors Associated with Nanoparticle-Assisted Enhanced Oil Recovery.  Industrial & Engineering Chemistry Research. 61  (49) 17715 to 17734. doi.org/10.1021/acs.iecr.2c02620
  41. Korlacki, R. and Knudtson, J. and Stokey, M. and Hilfiker, M. and Darakchieva, V. and Schubert, M. (2022). Linear strain and stress potential parameters for the three fundamental band to band transitions in β-Ga 2O3. Applied Physics Letters. 120 (4) Article No. 042103. doi.org/10.1063/5.0078157
  42. Kimel, Alexey and Zvezdin, Anatoly and Sharma, Sangeeta and Shallcross, Samuel and de Sousa, Nuno and García-Martín, Antonio and Salvan, Georgeta and Hamrle, Jaroslav and Stejskal, Ondřej and McCord, Jeffrey and Tacchi, Silvia and Carlotti, Giovanni and Gambardella, Pietro and Salis, Gian and Münzenberg, Markus and Schultze, Martin and Temnov, Vasily and Bychkov, Igor V and Kotov, Leonid N and Maccaferri, Nicolò and Ignatyeva, Daria and Belotelov, Vladimir and Donnelly, Claire and Rodriguez, Aurelio Hierro and Matsuda, Iwao and Ruchon, Thierry and Fanciulli, Mauro and Sacchi, Maurizio and Du, Chunhui Rita and Wang, Hailong and Armitage, N Peter and Schubert, Mathias and Darakchieva, Vanya and Liu, Bilu and Huang, Ziyang and Ding, Baofu and Berger, Andreas and Vavassori, Paolo. (2022). The 2022 magneto-optics roadmap. Journal of Physics D: Applied Physics. 55 (46) 463003. doi.org/10.1088/1361-6463/ac8da0
  43. Urban, F. K. and Barton, D. and Schubert, M. (2023). Numerical ellipsometry: A method for selecting a single β-gallium oxide monoclinic crystal orientation able to determine the complete permittivity tensor. Journal of Vacuum Science & Technology A. 41 (1) 013402. doi.org/10.1116/6.0002235
  44. Stokey, Megan and Gramer, Teresa and Korlacki, Rafał and Knight, Sean and Richter, Steffen and Jinno, Riena and Cho, Yongjin and Xing, Huili Grace and Jena, Debdeep and Hilfiker, Matthew and Darakchieva, Vanya and Schubert, Mathias. (2022). Infrared-active phonon modes and static dielectric constants in α-(AlxGa1−x)2O3 (0.18 ≤ x ≤ 0.54) alloys.  Applied Physics Letters. 120 (11) doi.org/10.1063/5.0085958
  45. Butler, Andrew and Argyropoulos, Christos. (2022). Mechanically tunable radiative cooling for adaptive thermal control. Applied Thermal Engineering. 211 (C) 118527.  doi.org/10.1016/j.applthermaleng.2022.118527
  46. Chen, Hanying and Li, Tianlin and Hao, Yifei and Rajapitamahuni, Anil and Xiao, Zhiyong and Schoeche, Stefan and Schubert, Mathias and Hong, Xia. (2022). Remote surface optical phonon scattering in ferroelectric Ba0.6Sr0.4TiO3 gated graphene. Journal of Applied Physics. 132 (15) Article No. 154301. doi.org/10.1063/5.0106939
  47. Peng, Kai and Tao, Renjie and Haeberlé, Louis and Li, Quanwei and Jin, Dafei and Fleming, Graham R. and Kéna-Cohen, Stéphane and Zhang, Xiang and Bao, Wei. (2022). Room-temperature polariton quantum fluids in halide perovskites. Nature Communications. 13 (1). doi.org/10.1038/s41467-022-34987-y
  48. Schubert, Mathias and Knight, Sean and Richter, Steffen and Kühne, Philipp and Stanishev, Vallery and Ruder, Alexander and Stokey, Megan and Korlacki, Rafał and Irmscher, Klaus and Neugebauer, Petr and Darakchieva, Vanya. (2022). Terahertz electron paramagnetic resonance generalized spectroscopic ellipsometry: The magnetic response of the nitrogen defect in 4H-SiC. Applied Physics Letters. 120  (10) Article No. 102101. doi.org/10.1063/5.0082353
  49. Li, Ying and Argyropoulos, Christos. (2021). Multiqubit entanglement and quantum phase gates with epsilon-near-zero plasmonic waveguides. Applied Physics Letters. 119 (21) Article No. 211104. doi.org/10.1063/5.0071797
  50. Jin, Boyuan and Mishra, Dhananjay and Argyropoulos, Christos. (2021). Efficient single-photon pair generation by spontaneous parametric down-conversion in nonlinear plasmonic metasurfaces. Nanoscale. doi.org/10.1039/D1NR05379E
  51. Adam Erickson, Syed Qamar Abbas Shah, Ather Mahmood, Pratyush Buragohain, Ilja Fescenko, Alexei Gruverman, Christian Binek, Abdelghani Laraoui, “Imaging Local Effects of Voltage and Boron Doping on Spin Reversal in Antiferromagnetic Magnetoelectric Cr2O3 Thin Films and Devices,” Advanced Functional Materials, Online Version of Record before inclusion in an Issue, 2408542 (First published: August 2, 2024; https://doi.org/10.1002/adfm.202408542. [FRG 1 & FRG 2 Authors]
  52. Suvechhya Lamichhane, Evelyn Carreto Guevara, Ilja Fescenko, Sy-Hwang Liou, Rebecca Y. Lai and Abdelghani Laraoui, “Magnetic Relaxometry of Methemoglobin by Widefield Nitrogen-Vacancy Microscopy,” Appl. Phys. Lett. 125, 114002 (Pgs. 1-8) (2024); doi: 10.1063/5.0217987. [FRG 1 & FRG 2 Authors]
  53. Ivon Acosta-Ramirez, Carley Conover, Jacob Larsen, Portia N.A. Plange, Ufuk Kilic, Becca Muller and Nicole M. Iverson, “Development of Sterile Platform for Quantification of Extracellular Analytes via Single Walled Carbon Nanotubes,” Analytical Biochemistry 693, 115582 (Pgs. 1-10) (2024); https://doi.org/10.1016/j.ab.2024.115582.
  54. Rupak Timalsina, Bharat Giri, Haohan Wang, Adam Erickson, Suchit Sarin, Suvechhya Lamichhane, Sy-Hwang Liou, Jeffrey E. Shield, Xiaoshan Xu and Abdelghani Laraoui, “Effect of Substrate on Spin-Wave Propagation Properties in Ferrimagnetic Thulium Iron Garnet Thin Films,” Adv. Electron. Mater. 2400398 (Pgs. 1-8) (2024); https://doi.org/10.1002/aelm.202400398. [FRG 1 & FRG 2 Authors]
  55. Joachim Würfl, Tomás Palacios, Huili Grace Xing, Yue Hao and Mathias Schubert, “Special Topic on Wide- and Ultrawide-Bandgap Electronic Semiconductor Devices,” Appl. Phys. Lett. 125, 070401 (Pgs. 1-7) (2024); doi: 10.1063/5.0221783.
  56. Nerijus Armakavicius, Philipp Kühne, Alexis Papamichail, Hengfang Zhang, Sean Knight, Axel Persson, Vallery Stanishev, Jr-Tai Chen, Plamen Paskov, Mathias Schubert and Vanya Darakchieva, “Electronic Properties of Group-III Nitride Semiconductors and Device Structures Probed by THz Optical Hall Effect,” Materials 17, 3343 (Pgs. 1-18) (2024); https://doi.org/10.3390/ma17133343.
  57. Ufuk Kilic, Yousra Traouli, Matthew Hilfiker, Khalil Bryant, Stefan Schoeche, Rene Feder, Christos Argyropoulos, Eva Schubert and Mathias Schubert, “Nanocolumnar Metamaterial Platforms: Scaling Rules for Structural Parameters Revealed from Optical Anisotropy,” Adv. Optical Mater. 2302767 (Pgs. 1-14) (2024); https://doi.org/10.1002/adom.202302767.
  58. Md Mohsinur Rahman Adnan, Mathias Schubert and Roberto C. Myers, “Origin of the Anisotropic Beer–Lambert Law from Dichroism and Birefringence in β-Ga2O3,” Appl. Phys. Lett. 125, 081103 (Pgs. 1-6) (2024); https://doi.org/10.1063/5.0226902.